

Seminari Interdisciplinari di Cultura Aeronautica II Serie, I Ciclo 4° incontro

15 dicembre 2018 NELLO SPAZIO, INFINE

Il programma SPACE RIDER: le protezioni termiche parlano italiano

OUTLINE

- Il CIRA e la Sperimentazione «Spaziale»
 - Plasma Wind Tunnel
 - Space Qualification Labs
- L'heritage nel settore del Rientro
 - USV
 - IXV
 - Space Rider
- Le Protezioni Termiche di Space
 Rider : un'avventura italiana
 - CMC flap
 - La Caratterizzazione in PWT

CIRA IN BRIEF

- A non-profit public-private partnership among:
 - ASI (Italian Space Agency) 47%
 - CNR (National Council for Research) 5%
 - Campania Region 16%
 - Italian Aerospace Industries 32%
- In 1989, the Italian Government entrusted CIRA of the Italian Aerospace Research Program (PRORA) management:
 - development and operation of strategic testing facilities,
 - development of strategic research programs,
 - enhancement of scientific competences and expertise.
- 370 employees and approx. 50 university students and PhD candidates a year
- Partner of the main European research programs in the aviation and space fields

Use or disclosure of the information contained herein is subject to specific written approval from CIRA

Needs- Space environments

Spacecraft structures and internal equipment are exposed to a variety of mechanical, thermal, and electromagnetic loads.

The environments, relevant to both Earth and space missions, are :

- Radiation
- Vibration
- Thermal
- Electromagnetic

One of the challenges in space qualification is to reproduce the operational environment such that critical components are tested to the limits of a mission without requiring expensive overdesign.

CIRA Plasma Wind Tunnel Facilities

Electrical Energy Supply System (90MVA)

Tower Water Supply System (11700 m^3/h)

Compressed Air Supply System (3,5kg/s)

SCIROCCO

PWT – PLASMA WIND TUNNEL SCIROCCO

- GOAL: IMPROVE SAFETY OF RE-ENTRY SPACE VEHICLES
- Use: Design and test thermal protection Systems for space vehicles
- OPERATIVE SINCE: 2002
- TESTING FLUID: AIR
- Max speed: Mach 16
- STAGNATION TEMPERATURE: ~ 10.000 ° C
- MAX TEST DURATIONS: < 25 MINUTES
- NOZZLE EXIT DIAMETER: 2.0 M
- NOMINAL DIMENSION OF TEST SPECIMEN: 0.6 M
- MAX POWER OF ARC HEATER: 70 MW

GHIBLI

GHIBLI – SMALL PLASMA WIND TUNNEL SCIROCCO

- GOAL: IMPROVE SAFETY OF RE-ENTRY SPACE VEHICLES
- Use: Design and test small specimens of materials to be used for thermal protection systems of space vehicles
- TESTING FLUID: AIR, (CO2 IS UNDER DEVELOPMENT)
- MAX SPEED: MACH 12
- Stagnation Temperature: \cong 10000 $^{\circ}$ C
- MAX TEST DURATIONS: < 25 MINUTES
- NOZZLE EXIT DIAMETER : 150 MM
- Nominal dimension of test specimen: 80 mm
- MAX POWER OF ARC HEATER: 2 MW

Space Qualification lab

Lab. Qualifica Spaziale

Lab. Vibrazioni/Acustica

CIRA

Centro Italiano Ricerche Aerospaziali

- Cualification capabilities ESA ECSS E-10-03-A "Space Engineering Testing" & MIL-STD 810F for:
 - Physical properties measurements
 - Acceleration test
 - Combined vibration, humidity, temperature and altitude test
 - Environmental stress screening
 - Thermal shock test
 - Thermal vacuum test
 - Pyroshock test
- Equipment under test (EUT) of nominal dimensions 400x400x400 mm and 20 kg weight
- Equipped with flanges and standard MIL connectors to link the EUT with an EGSE for the transmission of excitation and monitoring signals to verify the EUT functionalities during the test

CIRA Unmanned Space Vehicle : more than 15 years of Italian research on re-entry technologies

USV PROGRAMME

Objective: development of an unmanned experimentation platform.

G Scope:

- Validation of key enabling technologies : aerodynamics, aerothermodynamics, material, structures, guidance navigation and control.
- Demonstration of system capabilities to perform "glided" re-entry from sub-orbital or LEO conditions.
- **1**st Drop Transonic Flight Test: 02/2007
- **2**nd **Drop Transonic Flight Test:** 04/2010

European Space Agency

Centro Italiano Ricerche Aerospaziali

IXV MISSION

System Demonstration

First lifting-body system flying a fully representative return mission from LEO world-wide

Technologies In-flight Verification

 Advanced thermal protections and hot structures (with ceramics and ablatives)
 Advanced guidance navigation and control techniques (with thrusters and aero-flaps)
 Advanced Aerothermodynamics investigation techniques (with ≥300 integrated sensors)

Use or disclosure of the information contained herein is subject to specific written approval from CIRA

[Altitude scale: 10X]

The IXV mission was successfully performed on the **11th of February 2015**, with all flight hardware and all flight data successfully recovered, through flight segment telemetry transmission and ground segment acquisition, and onboard recording, with the confirmation that the flight data is complete and consistent among the various sources.

The IXV system, and all associated technologies, have successfully performed the whole flight program in line with the commanded maneuvers and trajectory predictions, performing an overall flight of approximately 25.000 km including 8.000 km in hot atmospheric re-entry environment with automatic guidance, starting from an orbital velocity of ~7.5 km/sec (Mach=27), concluding with precision landing.

100% of the IXV mission, system and technologies objectives have been successfully achieved.

- ENGINEERING ACTIVITIES
 - ✓ aerodynamics
 - ✓ aerothermodynamics,
 - ✓ technologies demonstration in flight
 - ✓ thermal protection systems qualification
- CIRA specialists were part of the ESA team during the IXV DEVELOPMENT, LAUNCH AND MISSION EXECUTION.
- DESIGN AND EXECUTION OF THE DROP TEST performed from a helicopter of an IXV prototype scale 1:1; the goal was to test parachute and buoyancy safety system.
- IXV Post Flight Analsysis

IXV EXHIBITION IN CASERTA ROYAL PALACE, JUNE-JULY 2015

Goals:

- To develop an affordable and sustainable reusable European space transportation system:
 - to enable routine access to and return from space
 - to provide a standardized platform for Payloads for multiple space application in a multitude of orbits
- To focus on the demonstration of a recurring service.

Main Mission scenario:

- Free Flyer: Microgravity Lab
- > In Orbit Demonstration:
 - Exploration (e.g. robotics)
 - Earth observation (e.g. instrumentation);
 - Others (e.g. Earth science, telecommunication).
- Surveillance applications (e.g. earth monitoring, satellite inspection)
- Phase-B1 completed in December 2017
- Activities for Phase-B2/C started on January 2018: System PDR in Q4 2018

MAIN SYSTEM FEATURES

- Launched with VEGA C and injected in LEO. Reference orbit for max payload: (400 km – 5deg).
- > Payload mass larger than 650 kg for the reference orbit.
- > Payload volume larger than 1.0 m3.
- > In-orbit operational capability of at least 2 months.
- > Precision ground landing allowing fast payload recovery time.
- > Main landing site on European territory.
- System reusability with minimum refurbishment for 6 missions

OUTLINE

- Il CIRA e la Sperimentazione
 «Spaziale»
 - Space Qualification Labs
 - Plasma Wind Tunnel
- L'heritage nel settore del Rientro
 - USV
 - IXV
 - Space Rider
- Le Protezioni Termiche di Space
 Rider : un'avventura italiana
 - CMC flap
 - La Caratterizzazione in PWT

EXAMPLES OF UHTC MASSIVE

Since 2000, in the framework of the national aerospace research program (PRORA-SHS) and within various other National and European programs, CIRA together with CNR-ISTEC have studied, developed, and tested monolithic UHTCs and, in cooperation with CSM, UHTC coatings on different high temperature structural materials.

Small winglets and nose made in UHTC (EXPERT and SHARK project) or UHTC coated (SCRAMSPACE project) were designed, manufactured and installed on rockets or re-entry vehicles for in-flight qualification. Unfortunately, only the SHARK nose tip experienced the flight environment.

ASA WLE Demonstrator made of CMC coated with UHTC

SHS Nose Cap Demonstrator: the tip is made of massive UHTC

EXPERT Structural aerodynamic profile made of massive UHTC ; UHTC-METAL I/F

SHARK Structural aerodynamic profile made of massive UHTC

SCRAMSPACE Structural aerodynamic profile made of metal UHTC coated and massive UHTC

EXAMPLES OF UHTC COATINGS

Massive UHTCs have proven extreme thermal resistance and chemical stability but the low toughness and low machinability make very hard to realize large and complex components.

UHTC coating can improve the performances of some refractory metal or CMC that can withstand very high temperature, but that suffer erosion because oxidation.

Combination of refractory metallic substrate and UHTC coating able to withstand:

- up to 1700°C
- for more than 7 minutes
- for more than one test
- without erosion

The tests have also shown that when the coating exceeded its working temperature, the failure stays localized in the overheated region, without propagations.

The samples survived temperature exceeding 1700°C for several minutes with no erosion.

TECHNOLOGICAL OPPORTUNITY

IXV Body Flap Assembly by MT Aerospace

PRIDE Control Surface Assembly by ?

Italian Research Consortium

CIRA HERITAGE TPS

Since 2016, CIRA is leading a consortium of Italian excellence in the ceramic materials sector for the manufacture of C/SiC components with low cost techniques based on the Pyrolysis + LSI + Coating of SiC processes.

Pyrolized CFRP

CMC

Pyrolised and siliconized phenolic base CFRP samples (CIRA / Petroceramics)

INDUSTRIAL PROCESSES

Liquid Silicon Infiltration (LSI) / Melt Infiltration (MI) Manufacturing Processes are based on 3 different methods to assure fibre protection and weak fibre/matrix bonding

PERFORMED ACTIVITIES

• MATERIAL SELECTION:

Phenolic prepreg fabric manufactured in Italy coupled with different type of fibers (following a trade off)

• CFRP:

different autoclave routes to set up the optimal process parameters (pressure, lay up, thermal cycles) vs properties and geometrical contraints

• PYROLYSIS:

- test of different pyrolysis cycles to set up the optimal process parameters (time, temperatures)
- SILICONIZATION:
 - Si infiltration to set up set up the optimal process parameters (time, temperatures)
- SEM, THERMAL AND MECHANICAL CHARACTERIZATION
- THERMO-MECHANICAL MODEL SET-UP AND VALIDATION

bundles silicon infiltration

Slight bundles silicon infiltration

No bundles silicon infiltration Low overall silicon infiltration

Mechanical properties increasing

RESULTS : MATERIAL SELECTION & PROCESS SET UP

Composite features vs mechanical properties

High fracture toughness

- No bundles silicon infiltration
- Fibers and bundles pullout
- Quite low fiber-matrix adhesion

Low fracture toughness (brittle behaviour)

- Bundles silicon infiltration
- Too high fiber-matrix adhesion

RESULTS : MATERIAL CHARACTERIZATION

PROPERTY of the selected	VALUE
material (Resin/Fibers)	
E-Modulus	56 Gpa
Tensile strength	150 Mpa
Flexural strength	200 MPa

 Table 5.4 Material properties of fabric and short fiber reinforced C/C-SiC

 and C/SiC material variants, obtained by LSI (DLR, SGL, SKT).

			c/c-sic	
Material properties		Unit	ХВ	хт
Manufacturer		-	DLR	DLR
Fiber reinforcement		-	Fabric	Fabric
Density		g cm-3	1.9	1.92
Open porosity		%	3.5	3.7
Young's modulus*		GPa	60	100
Flexural strength		MPa	160	300
Tensile strength		MPa	80	190
Strain to failure		%	0.15	0.35
Thermal conductivity [#]	П	W/mK	18.5/17	22.6/20.8
	T		9.0/7.5	10.3/8.8
Specific heat (25 °C)		JkgK ⁻¹	750	690
SiC content		vol%	21.2	19.8
Si content		vol%	5.4	4.1
C content		vol%	69.9	72.4
CTE		10 ⁻⁶ K ⁻¹	-1/2.5 ^d	-1/2.2 ^d
Ref. Temp. = 25°C	L		2.5/6.5 ^d	2.5/7 ^d

Expert Nose manufactured using C/C-Sic XB material

|| and \bot = fiber orientation. a 0-300°C/300-1200°C.

a 0-300°C/300
 b 20/1200°C.

b 20/1200 °C.
 c 25–800 °C.

d 100/1500°C.

e 25/1400°C.

e 25/1400 f 50°C.

g 200/1600°C.

RESULTS : COATING EVALUATION

SEM- Surface

SEM - Cross section

PLASMA ARC-JET TESTS

No active oxidation under relevant environmental testing carried out in plasma arc-jet facilities CIRA-GHIBLI

- Tmax = 1600°C ٠
- P02= 2500 Pa
- Exp. time 600 s ٠

SEM - Cross section

SEM- Surface

- □ The coating is made by a reaction process and not a deposition one
- □ Coating can be easily reapplied after use (reusability).

OUTLINE

- Il CIRA e la Sperimentazione
 «Spaziale»
 - Space Qualification Labs
 - Plasma Wind Tunnel
- L'heritage nel settore del Rientro
 - USV
 - IXV
 - Space Rider
- Le Protezioni Termiche di Space
 Rider : un'avventura italiana
 - CMC flap
 - La Caratterizzazione in PWT

TECHNOLOGY DEMONSTRATION

The goal of this test is to assess the behavior of the CMC technological demonstrator developed in the frame of Pro.R.A. funded SHS program in representative conditions of Space Rider atmospheric re-entry.

The test article has the same geometry of the EXPERT flap. This choice was driven from a twofold benefit:

- ✓ from one side the availability of the same test holder;
- ✓ from the other side to have a direct comparison in terms of aerothermal loads with a well assessed CMC technology, provided by MT-A, already tested in PWT environment.

PWT TEST OBJECTIVE

Maximize the similarity with EXPERT test in order to have a direct benchmark for SHS CMC demonstrator test;

Stress the demonstrator with thermal conditions representative of the ones expected for Space Rider re-entry mission.

SR Trajectory	SR Ref Point	Max heat flux	Max heat load	EXPERT Ref Point	EXPERT Heat Flux on ref	Equivalent test time
[-]	[-]	kW/m2	MJ/Kg	[-]	kW/m2	[s]
Max Heat Flux	F3	514	264	А	500	530
Max Heat Load	F3	343	353	A	500	700
Max Heat Flux	F8	350	141	В	300	470
Max Heat Load	F8	176	183	В	300	610

RESULTS : SCIROCCO TEST

C/SiC 400mm x 300mm body flap demonstrator mounted on the Scirocco Model Holder

A first Plasma test in CIRA SCIROCCO facility has been performed on 18th of April on a 400 mm x 300mm reinforced flap demonstrator:

Time	
Experienced	Temperature

600 S 1200 °C

INFRARED MEASUREMENT

IR results require additional post processing

TEST RESULTS COMPARISON

TEST SHS-SR CMC TECHNOLOGY DEMONSTRATOR, 2018

TEST EXPERT OPEN FLAP ASSEMBLY, 2011

SEM ANALYSIS

The specimens were incorporated in epoxy resin and subsequently polished with abrasive papers with decreasing FEPA granulometry (320, 500 and 1200).

The lapping and polishing process made it possible to observe the coating in section away from the area where the cut took place.

A sample was also taken from the inside, at an area with iridescent coloring. This specimen was observed on the surface as such, without performing polishing.

SEM ANALYSIS

Specimen E

The coating on the external side appears compact and covering the entire surface. It has a high thickness, around $80-100\mu m$. No signs of surface oxidation of the coating are observed.

Microcracks are observed which in some cases also involve part of the CMC. In correspondence of such cracks, however, no signs of oxidation of the fibers are observed.

SEM ANALYSIS

The coating is very similar to that of the reference plate, both for thickness and for compactness and extent of cracking. No signs of deterioration of coating and CMC due to the test are observed.

NUMERICAL MODEL

TEST POINT SET-UP

The temperature requirement has been defined by considering the bi-radiative equilibrium condition (i.e. body flap is assumed as a thin plate emitting in both windward and leeward surfaces with ε =0.8) on the GCP F3 along the reference trajectory.

A constant temperature of 1250°C ± 50°C shall be maintained at the center of the sample.

The duration of each cycle has been obtained by dividing the heat load obtained on the reference trajectory for the maximum heat flux (490 kW/m2 due to laminar-turbulent transition) of the GCP F3:

Duration = 344 Mj/m2 /490 kW/m2 = 690 s ≈ **700 s**

A constant wall pressure lower than 80 mbar shall be maintained throughout the test on the specimen wall in order to be compliant with pressure levels of flight conditions

SAMPLE GEOMETRY

The C/SiC materials samples are disks with 70 mm of exposed surface. They shall be slotted in the SCIROCCO Standard Model Holder.

- Four samples are provided by two different process routes by application of the same process parameters in the frame of Batch#2 material characterization.
- For each process route the two samples will be used respectively as reference sample by evaluating bending strength and performing SEM analysis at the end of manufacturing process and as reusability test sample.
- The reusability sample will be exposed to aerothermal cyclic loads representatives of six re-entry flights. After tests the sample will be cut to obtain specimens for bending test strength and for SEM post-test analysis.

PWT TEST SAMPLES

NOTE: Different sample colouring it's only a picture artifact

TEST MATRIX & TEST PROCEDURE

Test Campaign	Sample ID	Type of Test	
1	113	PWT + Bending + SEM	
2	121	PWT + Bending + SEM	

The model geometry consist in a flat faced cylinder, known as Standard Model Holder, not cooled, with the housing made of SiC and the inner made of bulk polycrystalline fibers, to be interfaced to an appropriate copper flange and then installed on the SCIROCCO cooled probe arm.

A dual color/single color 800-2500°C range is pointed on the center of the samples (left). Other two dual color/single color are pointed on the same position once the sample is out of the plasma jet to monitor the cooling phase, guaranteeing that between two cycles the sample temperature is below 400°C (right).

Tag	Manufacturer	Model	Operative Mode	Range [°C]	Wavelength [µm]
D800	DIAS	DSRF 11N	Two/Single-Color	800÷2500	0.7÷1.1
P300	IMPAC	IGAR 12-LO	Two/Single-Color	300÷1000	1.52÷1.64
P800	IMPAC	ISQ5	Two/Single-Color	800÷2500	0.9÷1.05

The sample has been exposed to the equivalent re-entry environment for an overall time of **4200 (1h 10')**

TEMPERATURE HOMOGENEITY

A confirmation of the temperature uniformity all over the sample surface has been obtained by Infrared Camera measurements.

Image taken from Test Campaign #2 (raw data)

POST TEST ANALYSIS

REFERENCE SAMPLES

Short ID:112

Short ID:113

Weight measurements were performed with ORMA BC 500 LCD (S011) (accuracy of 0.01g) The samples were dried at 105 ° C for 2 hours before each weight measurement. Mass loss below 0.3% has been measured.

SEM ANALYSIS - EDS

The chemical map shows that oxidation affects only the external part of the coating.

After the 6 cycles exposure an inner layer of compact coating consisting exclusively of SiC with a thickness of about $20\mu m$ can be observed.

It is interesting to note that in the bulk of the composite no oxygen is found at SiC and free silicon.

200 µm

VIDEOS

END